论文标题

在Tsallis统计中的微型典型和规范合奏中的独立谐波振荡器的热力学量

Thermodynamic quantities of independent harmonic oscillators in microcanonical and canonical ensembles in the Tsallis statistics

论文作者

Ishihara, Masamichi

论文摘要

我们研究了tsallis古典和tsallis Quantum Quantum量子$ q $的$ n $独立谐波振荡器的能量和熵,其中$ n $是振荡器的数量,而$ n $的数量是$ q $。能量和熵用物理温度表示,并获得了众所周知的表达式和Rényi熵。微型货架和规范集合之间的区别在于,在规范合奏中存在$ n $和$ q $的条件:$ n(q-1)<1 $。该条件没有出现在微型典型合奏中。熵在规范合奏中取决于$ q $,而不是$ q $依赖于微型典型合奏。对于$ n(q-1)<1 $,熵的这种差异很小,规范合奏中的熵与微型典型合奏中的熵没有差异。

We study the energy and entropies for $N$ independent harmonic oscillators in the microcanonical and the canonical ensembles in the Tsallis classical and the Tsallis quantum statistics of entropic parameter $q$, where $N$ is the number of the oscillators and the value of $q$ is larger than one. The energy and entropies are represented with the physical temperature, and the well-known expressions are obtained for the energy and Rényi entropy. The difference between the microcanonical and the canonical ensembles is the existence of the condition for $N$ and $q$ in the canonical ensemble: $N(q-1)<1$. The condition does not appear in the microcanonical ensemble. The entropies are $q$-dependent in the canonical ensemble, and are not $q$-dependent in the microcanonical ensemble. For $N(q-1)<1$, this difference in entropy is quite small, and the entropy in the canonical ensemble does not differ from the entropy in the microcanonical ensemble substantially.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源