论文标题

动态网络拥塞定价基于深度强化学习

Dynamic network congestion pricing based on deep reinforcement learning

论文作者

Sato, Kimihiro, Seo, Toru, Fuse, Takashi

论文摘要

在城市地区,交通拥堵是一个严重的问题。动态拥堵定价是消除战略规模交通拥堵的有用计划之一。但是,实际上,理论上很难或不可能确定最佳的动态拥堵定价,因为道路网络通常很大且复杂,而且道路使用者的行为尚不确定。为了解决这一挑战,这项工作提出了一种使用深度强化学习(DRL)的动态拥塞定价方法。它旨在通过利用深度强化学习的数据驱动性质来基于一般大规模道路网络中可观察到的数据来消除交通拥堵。该方法的新元素之一是分布式和合作学习方案。具体而言,DRL是通过空间分布的方式实现的,DRL代理之间的合作是通过新颖的技术建立的,我们称为空间共享的奖励和时间切换学习。它可以在大规模网络中快速且计算高效的学习。使用SIOUX FALLS网络的数值实验表明,由于新的学习方案,该方法效果很好。

Traffic congestion is a serious problem in urban areas. Dynamic congestion pricing is one of the useful schemes to eliminate traffic congestion in strategic scale. However, in the reality, an optimal dynamic congestion pricing is very difficult or impossible to determine theoretically, because road networks are usually large and complicated, and behavior of road users is uncertain. To account for this challenge, this work proposes a dynamic congestion pricing method using deep reinforcement learning (DRL). It is designed to eliminate traffic congestion based on observable data in general large-scale road networks, by leveraging the data-driven nature of deep reinforcement learning. One of the novel elements of the proposed method is the distributed and cooperative learning scheme. Specifically, the DRL is implemented by a spatial-temporally distributed manner, and cooperation among DRL agents is established by novel techniques we call spatially shared reward and temporally switching learning. It enables fast and computationally efficient learning in large-scale networks. The numerical experiments using Sioux Falls Network showed that the proposed method works well thanks to the novel learning scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源