论文标题
Detie:受对象检测启发的多语言开放信息提取
DetIE: Multilingual Open Information Extraction Inspired by Object Detection
论文作者
论文摘要
开放信息提取(OpenIE)的艺术神经方法通常以自回归或基于鉴定的方式迭代地提取三重态(或元组),以免产生重复。在这项工作中,我们提出了一种可以平等或更成功的问题的不同方法。也就是说,我们提出了一种新型的单通道方法,用于开放式启发,该方法受到计算机视觉的对象检测算法的启发。我们使用基于双方匹配的订单不足损失迫使独特的预测和用于序列标签的仅基于变压器的纯编码体系结构。与质量指标和推理时间相比,与标准基准的最先进模型相比,提出的方法更快,并且在标准基准上显示出了出色或类似的性能。我们的模型在CARB上的新最先进的性能为OIE2016评估的67.7%F1的新状态,而推断的速度比以前的最新状态更快。我们还在两种语言的零摄影设置中评估了模型的多语言版本,并引入了一种生成合成多语言数据的策略,以微调每个特定语言的模型。在这种情况下,我们在多语言Re-OIE2016上显示了15%的性能提高,葡萄牙语和西班牙语的f1均达到75%。代码和型号可在https://github.com/sberbank-ai/detie上找到。
State of the art neural methods for open information extraction (OpenIE) usually extract triplets (or tuples) iteratively in an autoregressive or predicate-based manner in order not to produce duplicates. In this work, we propose a different approach to the problem that can be equally or more successful. Namely, we present a novel single-pass method for OpenIE inspired by object detection algorithms from computer vision. We use an order-agnostic loss based on bipartite matching that forces unique predictions and a Transformer-based encoder-only architecture for sequence labeling. The proposed approach is faster and shows superior or similar performance in comparison with state of the art models on standard benchmarks in terms of both quality metrics and inference time. Our model sets the new state of the art performance of 67.7% F1 on CaRB evaluated as OIE2016 while being 3.35x faster at inference than previous state of the art. We also evaluate the multilingual version of our model in the zero-shot setting for two languages and introduce a strategy for generating synthetic multilingual data to fine-tune the model for each specific language. In this setting, we show performance improvement 15% on multilingual Re-OIE2016, reaching 75% F1 for both Portuguese and Spanish languages. Code and models are available at https://github.com/sberbank-ai/DetIE.