论文标题

所有最小$ [9,4] _ {2} $ - 代码是双曲线四边形

All minimal $[9,4]_{2}$-codes are hyperbolic quadrics

论文作者

Smaldore, Valentino

论文摘要

在过去的几年中,对最小的代码进行了深入研究。 $ [n,k] _ {q} $ - 最小线性代码是培养的,$ n $ in $ pg(k-1,q)$的尺寸$ n $的强阻滞集和强块集合的大小的下限由$(k-1)(q+1)给出。在本说明中,我们表明,$ pg(3,2)$中的所有强长度为9的强阻滞集是双曲线四边形$ q^{+}(3,2)$。

Minimal codes are being intensively studied in last years. $[n,k]_{q}$-minimal linear codes are in bijection with strong blocking sets of size $n$ in $PG(k-1,q)$ and a lower bound for the size of strong blocking sets is given by $(k-1)(q+1)\leq n$. In this note we show that all strong blocking sets of length 9 in $PG(3,2)$ are the hyperbolic quadrics $Q^{+}(3,2)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源