论文标题

Bokehme:当神经渲染遇到古典渲染时

BokehMe: When Neural Rendering Meets Classical Rendering

论文作者

Peng, Juewen, Cao, Zhiguo, Luo, Xianrui, Lu, Hao, Xian, Ke, Zhang, Jianming

论文摘要

我们提出了Bokehme,这是一种混合散景渲染框架,将神经渲染器与经典的身体动机渲染器结合。鉴于单个图像和潜在的不完美差异图,Bokehme生成了具有可调节的模糊大小,焦平面和光圈形状的高分辨率照片现实的散景效果。为此,我们分析了基于经典散射方法的错误,并得出一个计算以计算误差图的公式。基于此公式,我们通过基于散射的方法实现经典渲染器,并提出了一个两阶段的神经渲染器,以从经典渲染器中修复错误的区域。神经渲染器采用动态多尺度方案来有效处理任意模糊大小,并经过训练以处理不完美的差异输入。实验表明,我们的方法与以前的合成图像数据和具有预测差异的真实图像数据的先前方法进行了比较。进一步进行用户研究以验证我们方法的优势。

We propose BokehMe, a hybrid bokeh rendering framework that marries a neural renderer with a classical physically motivated renderer. Given a single image and a potentially imperfect disparity map, BokehMe generates high-resolution photo-realistic bokeh effects with adjustable blur size, focal plane, and aperture shape. To this end, we analyze the errors from the classical scattering-based method and derive a formulation to calculate an error map. Based on this formulation, we implement the classical renderer by a scattering-based method and propose a two-stage neural renderer to fix the erroneous areas from the classical renderer. The neural renderer employs a dynamic multi-scale scheme to efficiently handle arbitrary blur sizes, and it is trained to handle imperfect disparity input. Experiments show that our method compares favorably against previous methods on both synthetic image data and real image data with predicted disparity. A user study is further conducted to validate the advantage of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源