论文标题
部分可观测时空混沌系统的无模型预测
Global regularity of 2D generalized incompressible magnetohydrodynamic equations
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In this paper, we are concerned with the two-dimensional (2D) incompressible magnetohydrodynamic (MHD) equations with velocity dissipation given by $(-Δ)^α$ and magnetic diffusion given by reducing about logarithmic diffusion from standard Laplacian diffusion. More precisely, we establish the global regularity of solutions to the system as long as the power $α$ is a positive constant. In addition, we prove several global \emph{a priori} bounds for the case $α=0$. In particular, our results significantly improve previous works and take us one step closer to a complete resolution of the global regularity issue on the 2D resistive MHD equations, namely, the case when the MHD equations only have standard Laplacian magnetic diffusion.