论文标题
基于能源电路的集成能源管理系统:理论,实施和应用
Energy Circuit-based Integrated Energy Management System: Theory, Implementation, and Application
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Integrated energy systems (IESs), in which various energy flows are interconnected and coordinated to release potential flexibility for more efficient and secure operation, have drawn increasing attention in recent years. In this article, an integrated energy management system (IEMS) that performs online analysis and optimization on coupling energy flows in an IES is comprehensively introduced. From the theory perspective, an energy circuit method (ECM) that models natural gas networks and heating networks in the frequency domain is discussed. This method extends the electric circuit modeling of power systems to IESs and enables the IEMS to manage large-scale IESs. From the implementation perspective, the architecture design and function development of the IEMS are presented. Tutorial examples with illustrative case studies are provided to demonstrate its functions of dynamic state estimation, energy flow analysis, security assessment and control, and optimal energy flow. From the application perspective, real-world engineering demonstrations that apply IEMSs in managing building-scale, park-scale, and city-scale IESs are reported. The economic and environmental benefits obtained in these demonstration projects indicate that the IEMS has broad application prospects for a low/zero-carbon future energy system.