论文标题
通过Tomo-e Gozen检测到的M矮人的快速光学耀斑
Fast optical flares from M dwarfs detected by a one-second-cadence survey with Tomo-e Gozen
论文作者
论文摘要
我们报告了使用安装在Kiso Schmidt望远镜上的Tomo-e gozen摄像机对M-warf耀斑进行一秒钟的宽场调查。我们从M3-m5矮人中检测到22张耀斑,幅度从$ 5 \,\ mathrm {sec} \ Lesssim t_ \ mathrm {rise} \ liseSim 100 \,\ mathrm {sec} $ {sec} $和$ 0.5 \ simsim usesum f ___耀斑曲线大多显示出比从开普勒一分钟的节奏数据获得的陡峭的上升和较浅的衰变,并且倾向于具有平坦的峰结构。假设有一个黑体频谱,温度为$ 9,000-15,000 \,\ mathrm {k} $,估计峰值发光度和降压能为$ 10^{29}} \,\ \ \ Mathrm {erg {erg {erg,sec^{ - 1}}}}} \ simeSim l_ l _ peacs} 10^{31} \,\ Mathrm {erg \,sec^{ - 1}} $和$ 10^{31}} \,\ Mathrm {erg {erg} \ lyseSim e _ {\ rm bol} \ rm bol} \ lyssim 10^{34} {34} {34} {34} \,\,\,\,\,\,\ m gribt fast fab fast fabriate, m矮人。我们确认,根据Lamost获得的H $α$发射线强度,超过90%的宿主恒星具有磁性活跃。检测到的耀斑的估计发生率为每天活跃恒星每天0.7 $ $ \ sim,表明它们在磁性的M矮人中很常见。我们认为可以通过色层压缩模型来解释耀斑光曲线。上升时间与磁环的AlfVén传输时间一致,其长度为$ l_ \ Mathrm {loop} \ sim 10^4 \,\ Mathrm {km {km} $,并且场强度$ 1,000 \,\ Mathrm {g} $,而衰减时间可能会降低了一定的照顾,而降低了一定的con缩水。 $ \ gtrsim的温度10,000 \,\ mathrm {k} $。这些来自M矮人的耀斑可能是未来对未知类型快速光学瞬变的搜索的主要污染源。
We report a one-second-cadence wide-field survey for M-dwarf flares using the Tomo-e Gozen camera mounted on the Kiso Schmidt telescope. We detect 22 flares from M3-M5 dwarfs with rise times and amplitudes ranging from $5\, \mathrm{sec} \lesssim t_\mathrm{rise} \lesssim 100\,\mathrm{sec}$ and $0.5 \lesssim ΔF/F_{\star} \lesssim 20$, respectively. The flare light curves mostly show steeper rises and shallower decays than those obtained from the Kepler one-minute cadence data and tend to have flat peak structures. Assuming a blackbody spectrum with temperatures of $9,000-15,000\,\mathrm{K}$, the peak luminosities and bolometric energies are estimated to be $10^{29}\,\mathrm{erg\,sec^{-1}} \lesssim L_\mathrm{peak} \lesssim 10^{31}\,\mathrm{erg\,sec^{-1}}$ and $10^{31}\,\mathrm{erg} \lesssim E_{\rm bol} \lesssim 10^{34}\,\mathrm{erg}$, which constitutes the bright end of fast optical flares for M dwarfs. We confirm that more than 90\% of the host stars of the detected flares are magnetically active based on their H$α$ emission line intensities obtained by LAMOST. The estimated occurrence rate of the detected flares is $\sim 0.7$ per day per an active star, indicating they are common in magnetically active M dwarfs. We argue that the flare light curves can be explained by the chromospheric compression model; the rise time is broadly consistent with the Alfvén transit time of a magnetic loop with a length scale of $l_\mathrm{loop} \sim 10^4\,\mathrm{km}$ and a field strength of $1,000\,\mathrm{G}$, while the decay time is likely determined by the radiative cooling of the compressed chromosphere down to near the photosphere with a temperature of $\gtrsim 10,000\,\mathrm{K}$. These flares from M dwarfs could be a major contamination source for a future search of fast optical transients of unknown types.