论文标题
自动生成电子商务中的产品图像序列
Automatic Generation of Product-Image Sequence in E-commerce
论文作者
论文摘要
产品图像对于在电子商务平台中提供理想的用户体验至关重要。对于拥有数十亿种产品的平台,手动挑选和组织合格的图像非常耗时且耗尽劳动力。此外,为了生成/选择,产品图像需要遵守众多且复杂的图像规则。为了解决这些挑战,在本文中,我们提出了一个新的学习框架,以便在电子商务中自动生成产品图像序列(AGPI)。为此,我们提出了一个多模式统一的图像序列分类器(MUISC),该分类器能够通过学习同时检测所有规则违规的类别。 MUISC利用文本审查反馈作为额外的培训目标,并利用产品文本描述提供额外的语义信息。根据离线评估,我们表明拟议的MUISC显着胜过各种基准。除MUISC外,我们还将其他一些重要的模块整合在提出的框架中,例如主图像选择,不合格的内容检测和图像重复数据删除。借助所有这些模块,我们的框架在JD.com推荐平台中有效,有效地工作。到2021年12月,我们的AGPIS框架为约150万种产品生成了高标准图像,并获得了13.6%的拒绝率。
Product images are essential for providing desirable user experience in an e-commerce platform. For a platform with billions of products, it is extremely time-costly and labor-expensive to manually pick and organize qualified images. Furthermore, there are the numerous and complicated image rules that a product image needs to comply in order to be generated/selected. To address these challenges, in this paper, we present a new learning framework in order to achieve Automatic Generation of Product-Image Sequence (AGPIS) in e-commerce. To this end, we propose a Multi-modality Unified Image-sequence Classifier (MUIsC), which is able to simultaneously detect all categories of rule violations through learning. MUIsC leverages textual review feedback as the additional training target and utilizes product textual description to provide extra semantic information. Based on offline evaluations, we show that the proposed MUIsC significantly outperforms various baselines. Besides MUIsC, we also integrate some other important modules in the proposed framework, such as primary image selection, noncompliant content detection, and image deduplication. With all these modules, our framework works effectively and efficiently in JD.com recommendation platform. By Dec 2021, our AGPIS framework has generated high-standard images for about 1.5 million products and achieves 13.6% in reject rate.