论文标题
病变感知的对比表示组织组织病理学全幻灯片图像分析
Lesion-Aware Contrastive Representation Learning for Histopathology Whole Slide Images Analysis
论文作者
论文摘要
局部表示学习是促进组织病理学全幻灯片图像分析的性能的关键挑战。先前的表示学习方法遵循监督学习范式。但是,大规模WSI的手动注释是耗时且劳动力密集的。因此,自我监督的对比学习最近引起了密集的关注。目前的对比学习方法将每个样本视为一个类别,这遭受了类碰撞问题,尤其是在组织病理学图像分析的领域。在本文中,我们提出了一个新颖的对比表示学习框架,称为病变感染对比学习(LACL),用于组织病理学整个幻灯片图像分析。我们基于内存库结构建立了病变队列,以存储不同类别WSI的表示的表示,这使对比模型可以在训练过程中选择性定义负面对。此外,我们设计了一种队列改进策略,以净化病变队列中存储的表示形式。实验结果表明,LACL在不同数据集上学习在组织病理学图像表示学习中的最佳性能,并且在不同的WSI分类基准下的最先进方法。该代码可在https://github.com/junl21/lacl上找到。
Local representation learning has been a key challenge to promote the performance of the histopathological whole slide images analysis. The previous representation learning methods followed the supervised learning paradigm. However, manual annotation for large-scale WSIs is time-consuming and labor-intensive. Hence, the self-supervised contrastive learning has recently attracted intensive attention. The present contrastive learning methods treat each sample as a single class, which suffers from class collision problems, especially in the domain of histopathology image analysis. In this paper, we proposed a novel contrastive representation learning framework named Lesion-Aware Contrastive Learning (LACL) for histopathology whole slide image analysis. We built a lesion queue based on the memory bank structure to store the representations of different classes of WSIs, which allowed the contrastive model to selectively define the negative pairs during the training. Moreover, We designed a queue refinement strategy to purify the representations stored in the lesion queue. The experimental results demonstrate that LACL achieves the best performance in histopathology image representation learning on different datasets, and outperforms state-of-the-art methods under different WSI classification benchmarks. The code is available at https://github.com/junl21/lacl.