论文标题
概括性的两个颜色地图定理 - 完整的tilt-Rotor步态计划的定理
Generalized Two Color Map Theorem -- Complete Theorem of Robust Gait Plan for a Tilt-rotor
论文作者
论文摘要
步态计划是一种通常应用于地面机器人的过程,例如四足机器人; Tilt-Rotor是一种新型的四型四个输入,不是其中之一。在控制倾斜 - 依赖反馈线性化的倾斜旋转时,预计倾斜角度(输入)将过度改变,这在应用程序中可能不会预期。为了帮助抑制倾斜角度的密集变化,在反馈线性化之前,将步态计划程序引入了倾斜旋转。用户提前时间指定倾斜角度,而不是由控制规则给出。但是,基于这种情况,反馈线性化中的去耦矩阵对于某些态度,滚动角度和螺距角的组合可能是单数的。它阻碍了反馈线性化的进一步应用。因此,建立了两个彩色图定理,以最大程度地提高可接受的态度区域,在该区域中,滚动和音高的组合将提供可逆的去耦矩阵。然而,该定理过度限制了倾斜角度的选择,这可以排除一些可行的健壮步态。本文给出了广义的两个彩色图定理。所有健壮步态都可以根据这种广义定理找到。分析了满足该广义的两个彩色图定理(违反两个彩色图定理)的三个步态的鲁棒性。结果表明,概括的两个颜色图定理完成了对倾斜旋转的稳健步态的搜索。
Gait plan is a procedure that is typically applied on the ground robots, e.g., quadrupedal robots; the tilt-rotor, a novel type of quadrotor with eight inputs, is not one of them. While controlling the tilt-rotor relying on feedback linearization, the tilting angles (inputs) are expected to change over-intensively, which may not be expected in the application. To help suppress the intensive change in the tilting angles, a gait plan procedure is introduced to the tilt-rotor before feedback linearization. The tilting angles are specified with time in advance by users rather than given by the control rule. However, based on this scenario, the decoupling matrix in feedback linearization can be singular for some attitudes, combinations of roll angle and pitch angle. It hinders the further application of the feedback linearization. With this concern, Two Color Map Theorem is established to maximize the acceptable attitude region, where the combinations of roll and pitch will give an invertible decoupling matrix. That theorem, however, over-restricts the choice of the tilting angles, which can rule out some feasible robust gaits. This paper gives the generalized Two Color Map Theorem; all the robust gaits can be found based on this generalized theorem. The robustness of three gaits that satisfy this generalized Two Color Map Theorem (while violating Two Color Map Theorem) are analyzed. The results show that Generalized Two Color Map Theorem completes the search for the robust gaits for a tilt-rotor.