论文标题

天文时间序列的多尺度熵分析。发现混合脉动器的子截面

Multiscale entropy analysis of astronomical time series. Discovering subclusters of hybrid pulsators

论文作者

Audenaert, Jeroen, Tkachenko, Andrew

论文摘要

多尺度熵评估信号在不同时间尺度上的复杂性。它源自生物医学领域,最近成功地将光曲线表征为监督机器学习框架的一部分,以对出色的变异性进行分类。我们通过在恒星变异性环境中研究其算法属性并将其与传统的天文学时间序列分析方法联系起来,从而详细探讨了多尺度熵的行为。随后,我们将多尺度熵作为可解释的聚类框架的基础,该框架可以将P型和G模式都与仅具有P模式脉动的恒星(例如$δ$ SCT星)区分开,例如$δ$ SCT星,或者与仅具有G-Mode脉动的恒星(例如$γ$ dor stars)。我们发现,多尺度熵是在恒星光曲线中捕获可变性模式的强大工具。多尺度熵提供了对恒星脉动结构的见解,并仅根据时间域信息揭示了短期和长期可变性如何相互作用。我们还表明,多尺度熵与恒星信号的频率含量相关,尤其是G模式脉动器的近核旋转速率。我们发现,我们的新聚类框架可以分别在$δ$ SCT和$γ$ dor stars组中成功识别具有P和G模型的混合脉动脉动。我们的聚类框架的好处是它是无监督的。因此,它不需要先前标记的数据,因此并不需要以前的知识偏见。

The multiscale entropy assesses the complexity of a signal across different timescales. It originates from the biomedical domain and was recently successfully used to characterize light curves as part of a supervised machine learning framework to classify stellar variability. We explore the behavior of the multiscale entropy in detail by studying its algorithmic properties in a stellar variability context and by linking it with traditional astronomical time series analysis methods. We subsequently use the multiscale entropy as the basis for an interpretable clustering framework that can distinguish hybrid pulsators with both p- and g-modes from stars with only p-mode pulsations, such as $δ$ Sct stars, or from stars with only g-mode pulsations, such as $γ$ Dor stars. We find that the multiscale entropy is a powerful tool for capturing variability patterns in stellar light curves. The multiscale entropy provides insights into the pulsation structure of a star and reveals how short- and long-term variability interact with each other based on time-domain information only. We also show that the multiscale entropy is correlated to the frequency content of a stellar signal and in particular to the near-core rotation rates of g-mode pulsators. We find that our new clustering framework can successfully identify the hybrid pulsators with both p- and g-modes in sets of $δ$ Sct and $γ$ Dor stars, respectively. The benefit of our clustering framework is that it is unsupervised. It therefore does not require previously labeled data and hence is not biased by previous knowledge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源