论文标题

神经网络的确切光谱规范正规化

Exact Spectral Norm Regularization for Neural Networks

论文作者

Johansson, Anton, Strannegård, Claes, Engsner, Niklas, Mostad, Petter

论文摘要

我们追求一系列研究,旨在使深度神经网络的输入输出映射的雅各布频谱规范正规化。尽管以前的工作依赖上限技术,但我们提供了一个针对确切光谱规范的方案。我们显示,与以前的光谱正则化技术相比,我们的算法可以提高概括性能,同时保持了防御自然和对抗性噪声的强大保护。此外,我们进一步探讨了一些以前的推理,这些推理是关于雅各布正规化提供的强大对抗保护,并表明它可能具有误导性。

We pursue a line of research that seeks to regularize the spectral norm of the Jacobian of the input-output mapping for deep neural networks. While previous work rely on upper bounding techniques, we provide a scheme that targets the exact spectral norm. We showcase that our algorithm achieves an improved generalization performance compared to previous spectral regularization techniques while simultaneously maintaining a strong safeguard against natural and adversarial noise. Moreover, we further explore some previous reasoning concerning the strong adversarial protection that Jacobian regularization provides and show that it can be misleading.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源