论文标题
灵活速率学习的层次二向视频压缩,运动精炼和框架级分配
Flexible-Rate Learned Hierarchical Bi-Directional Video Compression With Motion Refinement and Frame-Level Bit Allocation
论文作者
论文摘要
本文为我们最近在端到端优化的层次阶段视频压缩方面提供了改进和新颖的补充,以进一步推动学习视频压缩的最新作品。作为改进,我们将运动估计和预测模块结合在一起,并压缩精制的残留运动向量,以提高速率延伸性能。作为新颖的补充,我们将提出的图像压缩的增益单元改编为柔性速率视频压缩,以两种方式:首先,增益单元使单个编码器模型可以在多速度距离操作点上运行;其次,我们利用增益单元来控制内部编码与双向编码框架之间的位分配,通过微调相应的模型,用于真正的灵活率学习的视频编码。实验结果表明,我们获得的最先进的利率延伸性能超过了学到的视频编码中所有先前艺术的效果。
This paper presents improvements and novel additions to our recent work on end-to-end optimized hierarchical bi-directional video compression to further advance the state-of-the-art in learned video compression. As an improvement, we combine motion estimation and prediction modules and compress refined residual motion vectors for improved rate-distortion performance. As novel addition, we adapted the gain unit proposed for image compression to flexible-rate video compression in two ways: first, the gain unit enables a single encoder model to operate at multiple rate-distortion operating points; second, we exploit the gain unit to control bit allocation among intra-coded vs. bi-directionally coded frames by fine tuning corresponding models for truly flexible-rate learned video coding. Experimental results demonstrate that we obtain state-of-the-art rate-distortion performance exceeding those of all prior art in learned video coding.