论文标题
锤子和约翰逊空间中几个距离套装的半决赛编程范围
Semidefinite programming bounds for few-distance sets in the Hamming and Johnson spaces
论文作者
论文摘要
我们研究了锤子和约翰逊空间中少数距离的最大基数问题。我们为这个问题制定了半决赛计划,并扩展了Barg-Musin和Musin-Nozaki的2011年作品。作为我们的主要结果,我们找到了新参数,其中最大尺寸的两距离和三距离集的最大大小是完全知道的。
We study the maximum cardinality problem of a set of few distances in the Hamming and Johnson spaces. We formulate semidefinite programs for this problem and extend the 2011 works by Barg-Musin and Musin-Nozaki. As our main result, we find new parameters for which the maximum size of two- and three-distance sets is known exactly.