论文标题

用于恶意软件检测的并行实例过滤

Parallel Instance Filtering for Malware Detection

论文作者

Jureček, Martin, Jurečková, Olha

论文摘要

机器学习算法广泛用于恶意软件检测区域。随着样本量的增长,分类算法的培训变得越来越昂贵。此外,培训数据集可能包含冗余或嘈杂的实例。要解决的问题是如何从大型培训数据集中选择代表性实例,而不降低准确性。这项工作提出了一种新的并行实例选择算法,称为并行实例过滤(PIF)。该算法的主要思想是将数据集拆分为涵盖整个数据集的实例的非重叠子集,并为每个子集应用一个过滤过程。每个子集由具有相同敌人的实例组成。结果,PIF算法很快,因为使用并行计算对彼此独立处理子集。我们将PIF算法与500,000个恶意和良性样本的大型数据集中的几种最新实例选择算法进行了比较。使用静态分析提取功能集,其中包括从便携式可执行文件格式中的元数据。我们的实验结果表明,所提出的实例选择算法可大大降低训练数据集的大小,而精度却略有降低。就平均分类精度和存储百分比之间的比率而言,PIF算法的表现优于实验中使用的现有实例选择方法。

Machine learning algorithms are widely used in the area of malware detection. With the growth of sample amounts, training of classification algorithms becomes more and more expensive. In addition, training data sets may contain redundant or noisy instances. The problem to be solved is how to select representative instances from large training data sets without reducing the accuracy. This work presents a new parallel instance selection algorithm called Parallel Instance Filtering (PIF). The main idea of the algorithm is to split the data set into non-overlapping subsets of instances covering the whole data set and apply a filtering process for each subset. Each subset consists of instances that have the same nearest enemy. As a result, the PIF algorithm is fast since subsets are processed independently of each other using parallel computation. We compare the PIF algorithm with several state-of-the-art instance selection algorithms on a large data set of 500,000 malicious and benign samples. The feature set was extracted using static analysis, and it includes metadata from the portable executable file format. Our experimental results demonstrate that the proposed instance selection algorithm reduces the size of a training data set significantly with the only slightly decreased accuracy. The PIF algorithm outperforms existing instance selection methods used in the experiments in terms of the ratio between average classification accuracy and storage percentage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源