论文标题
一种深度学习方法,以最大程度地减少Martensitic相变的能量
A Deep Learning Approach to Nonconvex Energy Minimization for Martensitic Phase Transitions
论文作者
论文摘要
我们提出了一种无网格的方法,以使用深度学习方法解决非凸能最小化问题,以解决马氏体相变和晶体中的双胞胎。这些问题对分析和计算都构成了多个挑战,因为它们涉及具有大量局部最小值的多井梯度能量,每种均涉及拓扑复杂的自由边界的微观结构,并具有梯度跳跃。我们使用Deep Ritz方法,其中最小化的候选者由参数依赖性的深神经网络表示,并且相对于网络参数,能量被最小化。新的必需成分是这里提出的一种新型激活函数,这是我们称为Smrelu的平滑整流线性单元。这捕获了通常激活功能失败的最小化器的结构。该方法是无网格的,因此可以在没有任何特殊处理的情况下近似于此问题必不可少的自由边界,并且实施非常易于实施。我们显示了许多数值计算的结果,证明了我们方法的成功。
We propose a mesh-free method to solve nonconvex energy minimization problems for martensitic phase transitions and twinning in crystals, using the deep learning approach. These problems pose multiple challenges to both analysis and computation, as they involve multiwell gradient energies with large numbers of local minima, each involving a topologically complex microstructure of free boundaries with gradient jumps. We use the Deep Ritz method, whereby candidates for minimizers are represented by parameter-dependent deep neural networks, and the energy is minimized with respect to network parameters. The new essential ingredient is a novel activation function proposed here, which is a smoothened rectified linear unit we call SmReLU; this captures the structure of minimizers where usual activation functions fail. The method is mesh-free and thus can approximate free boundaries essential to this problem without any special treatment, and is extremely simple to implement. We show the results of many numerical computations demonstrating the success of our method.