论文标题

通过ehrhart多项式对复杂的投影空间的一些特征

Some characterizations of the complex projective space via Ehrhart polynomials

论文作者

Loi, Andrea, Zuddas, Fabio

论文摘要

令$ p_ {λς_n} $为与标准symplex $σ_n\ subset \ subset \ mathbb {r}^n $相关的ehrhart多项式。在本文中,我们证明,如果$(m,l)$是$ n $二的两极化的复曲面,则具有相关的delzant polytope $δ$和ehrhart polyenmial $p_Δ$,以便$p_Δ=p_Δ=p_Δ= p _ {λς_n} $ (\ Mathbb {c} p^n,o(λ))$(其中$ o(1)$是$ \ mathbb {c} p^n $上的超平面捆绑包)在以下三种情况下:1。任意$ n $ and $ n $ and $λ= 1 $,2 $,2 $ n = 2 $ n = 2 $和$λ= 3 $,$λ chow可以半固定。

Let $P_{λΣ_n}$ be the Ehrhart polynomial associated to an intergal multiple $λ$ of the standard symplex $Σ_n \subset \mathbb{R}^n$. In this paper we prove that if $(M, L)$ is an $n$-dimensional polarized toric manifold with associated Delzant polytope $Δ$ and Ehrhart polynomial $P_Δ$ such that $P_Δ=P_{λΣ_n}$, for some $λ\in \mathbb{Z}^+$, then $(M, L)\cong (\mathbb{C} P^n, O(λ))$ (where $O(1)$ is the hyperplane bundle on $\mathbb{C} P^n$) in the following three cases: 1. arbitrary $n$ and $λ=1$, 2. $n=2$ and $λ=3$, 3. $λ=n+1$ under the assumption that the polarization $L$ is asymptotically Chow semistable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源