论文标题
质子:探测架构,将信息从预训练的语言模型链接到文本到SQL解析的信息
Proton: Probing Schema Linking Information from Pre-trained Language Models for Text-to-SQL Parsing
论文作者
论文摘要
长期以来,可以将可以应用于新数据库的文本到SQL解析器的重要性已得到认可,实现此目标的关键步骤是架构链接,即在生成SQL时正确地识别未看到的列或表。在这项工作中,我们提出了一个新颖的框架,以通过基于Poincaré距离指标的探测程序从大规模的预训练语言模型(PLM)中引起关系结构,并使用诱导的关系来增强基于图的基于图的解析器,以更好地链接。与常用的基于规则的模式链接的方法相比,我们发现探测关系也可以稳健地捕获语义对应关系,即使提及和实体的表面形式不同。此外,我们的探测过程完全不受监督,不需要其他参数。广泛的实验表明,我们的框架在三个基准测试中设定了新的最先进的性能。我们从经验上验证我们的探测程序确实可以通过定性分析找到所需的关系结构。我们的代码可以在https://github.com/alibababaresearch/damo-convai上找到。
The importance of building text-to-SQL parsers which can be applied to new databases has long been acknowledged, and a critical step to achieve this goal is schema linking, i.e., properly recognizing mentions of unseen columns or tables when generating SQLs. In this work, we propose a novel framework to elicit relational structures from large-scale pre-trained language models (PLMs) via a probing procedure based on Poincaré distance metric, and use the induced relations to augment current graph-based parsers for better schema linking. Compared with commonly-used rule-based methods for schema linking, we found that probing relations can robustly capture semantic correspondences, even when surface forms of mentions and entities differ. Moreover, our probing procedure is entirely unsupervised and requires no additional parameters. Extensive experiments show that our framework sets new state-of-the-art performance on three benchmarks. We empirically verify that our probing procedure can indeed find desired relational structures through qualitative analysis. Our code can be found at https://github.com/AlibabaResearch/DAMO-ConvAI.