论文标题
物理信息(量子)神经网络设置中的积分转换:应用和用例
Integral Transforms in a Physics-Informed (Quantum) Neural Network setting: Applications & Use-Cases
论文作者
论文摘要
在工程和科学方面的许多计算问题中,功能或模型差异化是必不可少的,但还需要集成。一类重要的计算问题包括所谓的全差异方程,包括函数的积分和衍生物。在另一个示例中,随机微分方程可以用随机变量的概率密度函数的部分微分方程来编写。要根据密度函数来学习随机变量的特征,需要计算特定的积分变换,即密度函数的特定矩。最近,物理知识神经网络的机器学习范式以越来越多的流行度作为一种通过利用自动分化来求解微分方程的方法。在这项工作中,我们建议通过自动集成的物理信息的神经网络的范式来计算训练的解决方案上的复杂积分转换,并求解在训练过程中在训练过程中计算积分的整数差异方程。此外,我们在各种应用程序设置中展示了这些技术,并在数值上模拟了基于量子计算机的神经网络以及经典的神经网络。
In many computational problems in engineering and science, function or model differentiation is essential, but also integration is needed. An important class of computational problems include so-called integro-differential equations which include both integrals and derivatives of a function. In another example, stochastic differential equations can be written in terms of a partial differential equation of a probability density function of the stochastic variable. To learn characteristics of the stochastic variable based on the density function, specific integral transforms, namely moments, of the density function need to be calculated. Recently, the machine learning paradigm of Physics-Informed Neural Networks emerged with increasing popularity as a method to solve differential equations by leveraging automatic differentiation. In this work, we propose to augment the paradigm of Physics-Informed Neural Networks with automatic integration in order to compute complex integral transforms on trained solutions, and to solve integro-differential equations where integrals are computed on-the-fly during training. Furthermore, we showcase the techniques in various application settings, numerically simulating quantum computer-based neural networks as well as classical neural networks.