论文标题
与结论性相当良好的量子转移的交错的海森堡连锁系列的精确解决方案
Exact solution of a family of staggered Heisenberg chains with conclusive pretty good quantum state transfer
论文作者
论文摘要
我们明确地为一半旋转链的家族构建了精确的解决方案。旋转链汉密尔顿(Hamiltonian)对应于各向同性的海森堡汉密尔顿(Heisenberg Hamiltonian),交换耦合的交换耦合仅占两个不同的值。我们在单启示子空间中确定了确切的解决方案。关于量子状态转移的问题,我们使用有关非理性数字近似的解决方案和一些定理,以显示出特定长度链的结论性相当良好传输的出现。我们提供了数值证据,表明长度不是两个力量的链条实现了相当好的传播。一组旋转链显示出非常好的变速箱是带有精确解决方案的家庭子集。使用扰动理论,当交换耦合强度之一比另一个大的数量级时,我们对案例进行了彻底分析。这种强大的耦合极限使我们能够以一种简单的方式研究出现非常好的传输的外观。使用特征值,特征向量和传输概率的分析闭合表达式,使我们能够获得观察到非常好的传输时间的精确渐近行为。此外,我们表明,这段时间是一个幂定律,其指数是链长的增加功能。我们还讨论了在强耦合极限的范围和当交换耦合的数量级相同时观察到的相当好的传输时间获得的分频行为。
We construct the exact solution for a family of one-half spin chains explicitly. The spin chains Hamiltonian corresponds to an isotropic Heisenberg Hamiltonian, with staggered exchange couplings that take only two different values. We work out the exact solutions in the one-excitation subspace. Regarding the problem of quantum state transfer, we use the solution and some theorems concerning the approximation of irrational numbers, to show the appearance of conclusive pretty good transmission for chains with particular lengths. We present numerical evidence that pretty good transmission is achieved by chains whose length is not a power of two. The set of spin chains that shows pretty good transmission is a subset of the family with an exact solution. Using perturbation theory, we thoroughly analyze the case when one of the exchange coupling strengths is orders of magnitude larger than the other. This strong coupling limit allows us to study, in a simple way, the appearance of pretty good transmission. The use of analytical closed expressions for the eigenvalues, eigenvectors, and transmission probabilities allows us to obtain the precise asymptotic behavior of the time where the pretty good transmission is observed. Moreover, we show that this time scales as a power law whose exponent is an increasing function of the chain length. We also discuss the crossover behavior obtained for the pretty good transmission time between the regimes of strong coupling limit and the one observed when the exchange couplings are of the same order of magnitude.