论文标题
由多个四足机器人进行的协作导航和操纵电缆负载
Collaborative Navigation and Manipulation of a Cable-towed Load by Multiple Quadrupedal Robots
论文作者
论文摘要
本文解决了机器人的问题,可以在指定的目标位置协作拖曳带有电缆的负载,同时避免实时碰撞。引入电缆(与刚性链接相反)的引入使机器人团队可以通过电缆的松弛/拉特开关更改其内在尺寸,从而使机器人团队能够穿越狭窄的空间。但是,这是一个具有挑战性的问题,因为混合模式开关以及多个机器人和负载之间的动态耦合。以前解决此类问题的尝试是离线执行的,并且不考虑避免在线障碍。在本文中,我们介绍了一个级联的计划方案,并采用平行的集中式轨迹优化,涉及混合模式开关。我们还每个机器人开发了一组分散的计划者,这使我们可以解决在线协作负载操作问题的方法。我们开发并演示了第一个能够移动有线电视载荷的首个协作自治框架之一,该框架太重,无法通过一个机器人移动,通过狭窄空间,具有实时反馈和实验中的反应性计划。
This paper tackles the problem of robots collaboratively towing a load with cables to a specified goal location while avoiding collisions in real time. The introduction of cables (as opposed to rigid links) enables the robotic team to travel through narrow spaces by changing its intrinsic dimensions through slack/taut switches of the cable. However, this is a challenging problem because of the hybrid mode switches and the dynamical coupling among multiple robots and the load. Previous attempts at addressing such a problem were performed offline and do not consider avoiding obstacles online. In this paper, we introduce a cascaded planning scheme with a parallelized centralized trajectory optimization that deals with hybrid mode switches. We additionally develop a set of decentralized planners per robot, which enables our approach to solve the problem of collaborative load manipulation online. We develop and demonstrate one of the first collaborative autonomy framework that is able to move a cable-towed load, which is too heavy to move by a single robot, through narrow spaces with real-time feedback and reactive planning in experiments.