论文标题

$ n $参与类别中的优点

Goodness in $n$-angulated categories

论文作者

Martensen, Sebastian H.

论文摘要

我们概括了良好,中等良好和verdier的概念,即在三角形类别中杰出三角形的良好形态,首先是由Neeman引入的,以$ n $ gation的类别引入,在Geiss,Keller和Oppermann引入。然后,我们证明,$ n $ angles的所有形态均以$(n-2)$ - 群集倾斜$ n $ - 流向类别的类别中等,适合$ n> 3 $。

We generalise the notions of good, middling good, and Verdier good morphisms of distinguished triangles in triangulated categories, first introduced by Neeman, to the setting of $n$-angulated categories, introduced in Geiss, Keller, and Oppermann. We then prove that all morphisms of $n$-angles in an $(n-2)$-cluster tilting $n$-angulated category are middling good for $n>3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源