论文标题

迈向数据驱动的需求工程方法:用户评论的自动分析

Towards a Data-Driven Requirements Engineering Approach: Automatic Analysis of User Reviews

论文作者

Wei, Jialiang, Courbis, Anne-Lise, Lambolais, Thomas, Xu, Binbin, Bernard, Pierre Louis, Dray, Gérard

论文摘要

我们对数据驱动的需求工程,尤其是对用户评论的考虑。这些在线评论是提取新需求和改进请求的丰富信息来源。在这项工作中,我们使用Camembert提供了自动分析,这是法语中最先进的语言模型。我们从健康与健身领域的三个应用程序中创建了一个由6000个用户评论的多标签分类数据集。结果令人鼓舞,并建议可以自动识别有关新功能请求的评论。 数据集可在以下网址提供:https://github.com/jl-wei/apia2022-french-user-reviews-classification-dataset。

We are concerned by Data Driven Requirements Engineering, and in particular the consideration of user's reviews. These online reviews are a rich source of information for extracting new needs and improvement requests. In this work, we provide an automated analysis using CamemBERT, which is a state-of-the-art language model in French. We created a multi-label classification dataset of 6000 user reviews from three applications in the Health & Fitness field. The results are encouraging and suggest that it's possible to identify automatically the reviews concerning requests for new features. Dataset is available at: https://github.com/Jl-wei/APIA2022-French-user-reviews-classification-dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源