论文标题

Feynman图在壳传播器方面

Feynman diagrams in terms of on-shell propagators

论文作者

Brandt, F. T., Frenkel, J., McKeon, D. G. C.

论文摘要

结果表明,Feynman图的通常表达方式是Feynman繁殖者$Δ_F(X-Y)$的表达,可以用等效表达式代替涉及正能量的固定传播剂$Δ^+(X-Y)$,并补充了与时间顺序相关的适当功能。当这种表达Feynman图的这种替代方法是将傅立叶转换为动量空间时,与每个函数相关的动量$δ^+(x-y)$是壳上的,并且只有在能量归因于时间顺序函数的贡献时,只有在每个顶点保守。最终的表达方式类似于Kadyshevsky通过得出$ s $ - 矩阵的替代扩展而获得的。关于如何得出这种替代扩展的详细说明,并显示了它如何提供一种直接的方法来确定Feynman图的虚构部分,这使得在使用Unitarity方法计算Feynman图时,它使其有用。通过考虑自我相互作用标量模型中的许多特定的Feynman图,并在QED中,我们展示了这种替代方法如何与旧的扰动理论相关,并可以简化Feynman图的直接计算。

It is shown that the usual expression for a Feynman diagram in terms of the Feynman propagator $Δ_F(x-y)$ can be replaced by an equivalent expression involving the positive-energy on-shell propagator $Δ^+(x-y)$, supplemented by appropriate functions associated with time-ordering. When this alternate way of expressing a Feynman diagram is Fourier transformed into momentum space, the momentum associated with each function $Δ^+(x-y)$ is on-shell, and is only conserved at each vertex if an energy is attributed to the contributions of the time-ordering functions. The resulting expression is analogous to what Kadyshevsky had obtained by deriving an alternate expansion for the $S$--matrix. A detailed explanation of how this alternate expansion is derived is given, and it is shown how it provides a straightforward way of determining the imaginary part of a Feynman diagram, which makes it useful when using unitarity methods for computing a Feynman diagram. By considering a number of specific Feynman diagrams in self-interacting scalar models and in QED, we show how this alternate approach can be related to the old perturbation theory and can simplify direct calculations of Feynman diagrams.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源