论文标题
迈向联盟的长尾学习
Towards Federated Long-Tailed Learning
论文作者
论文摘要
数据隐私和类不平衡是许多机器学习任务中的规范而不是例外。在一方面,已经启动了最近的尝试,解决了从普遍的私人数据中学习的问题,另一方面是从长尾数据中学习的。但是,这两个假设在实际应用中都可能存在,而同时减轻这两个问题的有效方法仍在开发中。在本文中,我们专注于在流行的隐私保存联合学习(FL)框架的背景下使用长尾(LT)数据分布进行学习。我们在FL框架中使用不同的本地或全局长尾数据分布来表征三个方案,并突出相应的挑战。在不同方案下的初步结果表明,未来的实质性工作是更好地解决特定的联合长尾学习任务的高度必要性。
Data privacy and class imbalance are the norm rather than the exception in many machine learning tasks. Recent attempts have been launched to, on one side, address the problem of learning from pervasive private data, and on the other side, learn from long-tailed data. However, both assumptions might hold in practical applications, while an effective method to simultaneously alleviate both issues is yet under development. In this paper, we focus on learning with long-tailed (LT) data distributions under the context of the popular privacy-preserved federated learning (FL) framework. We characterize three scenarios with different local or global long-tailed data distributions in the FL framework, and highlight the corresponding challenges. The preliminary results under different scenarios reveal that substantial future work are of high necessity to better resolve the characterized federated long-tailed learning tasks.