论文标题
将重新归一化的单曲$ GW $方法与伯特 - 盐的方程式相结合,以进行准确的中性激发能
Combining Renormalized Singles $GW$ Methods with the Bethe-Salpeter Equation for Accurate Neutral Excitation Energies
论文作者
论文摘要
我们将重新归一化的单打(RS)Green的功能应用于伯特 - 钙板方程(BSE)/$ GW $方法,以预测分子系统的准确中性激发能。 BSE计算是在$ g _ {\ text {rs}} w _ {\ text {rs}} $方法的顶部执行的,该方法还使用RS Green的功能来计算筛选的COULOMB交互$ W $。 We show that the BSE/$G_{\text{RS}}W_{\text{RS}}$ approach significantly outperforms BSE/$G_0W_0$ for predicting excitation energies of valence, Rydberg and charge transfer (CT) excitations by benchmarking the Truhlar-Gagliardi set, Stein CT set and an atomic Rydberg测试集。 For the Truhlar-Gagliardi test set, BSE/$G_{\text{RS}}W_{\text{RS}}$ provides comparable accuracy to time-dependent density functional theory (TDDFT) and is slightly better than BSE starting from eigenvalue self-consistent $GW$ (ev$GW$).对于Stein CT测试集,BSE/$ g _ {\ text {rs}} w _ {\ text {rs}} $显着优于BSE/$ G_0W_0 $和TDDFT,其精度可与BSE/EV $ GW $相比。我们还表明,bse/$ g _ {\ text {rs}} w _ {\ text {rs}} $很好地预测了原子系统的rydberg激发能。除了出色的精度外,bse/$ g _ {\ text {rs}} w _ {\ text {rs}} $在很大程度上消除了对密度函数近似的选择的依赖性。这项工作表明,bse/$ g _ {\ text {rs}} w _ {\ text {rs}} $方法对于预测广泛的系统的激发能量是准确而有效的,该系统扩展了BSE/$ GW $方法的适用性。
We apply the renormalized singles (RS) Green's function in the Bethe-Salpeter equation (BSE)/$GW$ approach to predict accurate neutral excitation energies of molecular systems. The BSE calculations are performed on top of the $G_{\text{RS}}W_{\text{RS}}$ method, which uses the RS Green's function also for the computation of the screened Coulomb interaction $W$. We show that the BSE/$G_{\text{RS}}W_{\text{RS}}$ approach significantly outperforms BSE/$G_0W_0$ for predicting excitation energies of valence, Rydberg and charge transfer (CT) excitations by benchmarking the Truhlar-Gagliardi set, Stein CT set and an atomic Rydberg test set. For the Truhlar-Gagliardi test set, BSE/$G_{\text{RS}}W_{\text{RS}}$ provides comparable accuracy to time-dependent density functional theory (TDDFT) and is slightly better than BSE starting from eigenvalue self-consistent $GW$ (ev$GW$). For the Stein CT test set, BSE/$G_{\text{RS}}W_{\text{RS}}$ significantly outperforms BSE/$G_0W_0$ and TDDFT with the accuracy comparable to BSE/ev$GW$. We also show that BSE/$G_{\text{RS}}W_{\text{RS}}$ predicts Rydberg excitation energies of atomic systems well. Besides the excellent accuracy, BSE/$G_{\text{RS}}W_{\text{RS}}$ largely eliminates the dependence on the choice of the density functional approximation. This work demonstrates that the BSE/$G_{\text{RS}}W_{\text{RS}}$ approach is accurate and efficient for predicting excitation energies for a broad range of systems, which expands the applicability of the BSE/$GW$ approach.