论文标题
Mkiou损失:朝着空中图像中的准确定向对象检测
MKIoU Loss: Towards Accurate Oriented Object Detection in Aerial Images
论文作者
论文摘要
面向边界框回归对于定向对象检测至关重要。但是,基于回归的方法通常会遭受边界问题以及损失和评估指标之间的不一致性。在本文中,提出了一个调制的卡尔曼·伊奥(Kalman iou)损失,命名为Mkiou。为了避免边界问题,我们将定向边界框转换为高斯分布,然后使用卡尔曼过滤器近似交叉区域。但是,计算出的交叉区域和实际交叉区域之间存在显着差异。因此,我们提出了一个调制因素,以调节角度偏差和宽度高度偏移对损失变化的敏感性,从而使损失与评估度量更一致。此外,高斯建模方法避免了边界问题,但同时引起方形对象的角度混乱。因此,提出了高斯角损失(GA损失),以通过增加平方目标的校正损失来解决此问题。提出的GA损失可以很容易地扩展到其他基于高斯的方法。在三个公开可用的空中图像数据集(DOTA,UCAS-AOD和HRSC2016)上进行了实验,显示了该方法的有效性。
Oriented bounding box regression is crucial for oriented object detection. However, regression-based methods often suffer from boundary problems and the inconsistency between loss and evaluation metrics. In this paper, a modulated Kalman IoU loss of approximate SkewIoU is proposed, named MKIoU. To avoid boundary problems, we convert the oriented bounding box to Gaussian distribution, then use the Kalman filter to approximate the intersection area. However, there exists significant difference between the calculated and actual intersection areas. Thus, we propose a modulation factor to adjust the sensitivity of angle deviation and width-height offset to loss variation, making the loss more consistent with the evaluation metric. Furthermore, the Gaussian modeling method avoids the boundary problem but causes the angle confusion of square objects simultaneously. Thus, the Gaussian Angle Loss (GA Loss) is presented to solve this problem by adding a corrected loss for square targets. The proposed GA Loss can be easily extended to other Gaussian-based methods. Experiments on three publicly available aerial image datasets, DOTA, UCAS-AOD, and HRSC2016, show the effectiveness of the proposed method.