论文标题

仇恨言论标准:一种针对特定任务的仇恨言语定义的模块化方法

Hate Speech Criteria: A Modular Approach to Task-Specific Hate Speech Definitions

论文作者

Khurana, Urja, Vermeulen, Ivar, Nalisnick, Eric, van Noorloos, Marloes, Fokkens, Antske

论文摘要

\ textbf {攻击性内容警告}:本文仅包含进攻性语言,仅用于提供阐明这项研究的示例,并且不反映作者的意见。请注意,这些例子是令人反感的,可能会导致您困扰。 识别\ textit {仇恨言语}的主观性使其成为一项复杂的任务。 NLP中的不同和不完整的定义也反映了这一点。我们提出\ textit {仇恨言论}标准,以法律和社会科学的观点开发,目的是帮助研究人员在五个方面创建更精确的定义和注释指南:(1)目标群体,(2)统治者,(3)犯罪者特征,(4)负面组的类型以及(5)潜在的后果/效果类型。定义可以进行构建,使其涵盖更广泛或更狭窄的现象。因此,可以在指定标准或使其打开的情况下做出有意识的选择。我们认为,目标开发人员的目标和确切的任务应确定\ textit {仇恨言语}的范围的定义。我们从\ url {hatespeechdata.com}概述了英语数据集的属性,该属性可能有助于为特定方案选择最合适的数据集。

\textbf{Offensive Content Warning}: This paper contains offensive language only for providing examples that clarify this research and do not reflect the authors' opinions. Please be aware that these examples are offensive and may cause you distress. The subjectivity of recognizing \textit{hate speech} makes it a complex task. This is also reflected by different and incomplete definitions in NLP. We present \textit{hate speech} criteria, developed with perspectives from law and social science, with the aim of helping researchers create more precise definitions and annotation guidelines on five aspects: (1) target groups, (2) dominance, (3) perpetrator characteristics, (4) type of negative group reference, and the (5) type of potential consequences/effects. Definitions can be structured so that they cover a more broad or more narrow phenomenon. As such, conscious choices can be made on specifying criteria or leaving them open. We argue that the goal and exact task developers have in mind should determine how the scope of \textit{hate speech} is defined. We provide an overview of the properties of English datasets from \url{hatespeechdata.com} that may help select the most suitable dataset for a specific scenario.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源