论文标题

使用差异图以3D形状恢复细节

Recovering Detail in 3D Shapes Using Disparity Maps

论文作者

de Chanlatte, Marissa Ramirez, Gadelha, Matheus, Groueix, Thibault, Mech, Radomir

论文摘要

我们提出了一种微调方法,以改善从单个图像重建的3D几何形状的外观。我们利用单眼深度估计的进步来获得差异图,并提出了一种新颖的方法,可以通过使用形状先验来解决相关摄像机参数的优化,将2D归一化差异图转换为3D点云。从差异创建3D点云后,我们引入了一种将新点云与现有信息相结合的方法,以形成更忠实,更详细的最终几何形状。我们通过在合成图像和真实图像上进行多个实验来证明我们方法的功效。

We present a fine-tuning method to improve the appearance of 3D geometries reconstructed from single images. We leverage advances in monocular depth estimation to obtain disparity maps and present a novel approach to transforming 2D normalized disparity maps into 3D point clouds by using shape priors to solve an optimization on the relevant camera parameters. After creating a 3D point cloud from disparity, we introduce a method to combine the new point cloud with existing information to form a more faithful and detailed final geometry. We demonstrate the efficacy of our approach with multiple experiments on both synthetic and real images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源