论文标题
学习量子系统
Learning Quantum Systems
论文作者
论文摘要
量子技术的未来发展依赖于创建和操纵复杂性增加的量子系统,并在计算,仿真和传感中进行关键应用。这对量子状态及其动态的有效控制,校准和验证提出了严重的挑战。尽管只有在量子计算机上可以进行大规模量子系统的完整模拟,但经典的表征和优化方法仍然起着重要作用。在这里,我们回顾了使用经典后处理技术的不同方法,可能与自适应优化相结合,学习量子系统,它们的相关性能,动态和与环境的相互作用。我们讨论了跨不同多量子体系结构的理论建议和成功实现,例如自旋矩,被困的离子,光子和原子系统以及超导电路。这篇综述提供了许多关键概念在许多此类方法中反复出现的简短背景,并特别强调了贝叶斯形式主义和神经网络。
The future development of quantum technologies relies on creating and manipulating quantum systems of increasing complexity, with key applications in computation, simulation and sensing. This poses severe challenges in the efficient control, calibration and validation of quantum states and their dynamics. Although the full simulation of large-scale quantum systems may only be possible on a quantum computer, classical characterization and optimization methods still play an important role. Here, we review different approaches that use classical post-processing techniques, possibly combined with adaptive optimization, to learn quantum systems, their correlation properties, dynamics and interaction with the environment. We discuss theoretical proposals and successful implementations across different multiple-qubit architectures such as spin qubits, trapped ions, photonic and atomic systems, and superconducting circuits. This Review provides a brief background of key concepts recurring across many of these approaches with special emphasis on the Bayesian formalism and neural networks.