论文标题

智能测试的条件变量选择

Conditional Variable Selection for Intelligent Test

论文作者

Liao, Yiwen, Ge, Tianjie, Latty, Raphaël, Yang, Bin

论文摘要

智能测试需要大规模的高维数据有效分析。传统上,该分析通常是由人类专家进行的,但在大数据时代不可扩展。为了应对这一挑战,最近将可变选择引入了智能测试。但是,在实践中,我们遇到的方案在变量选择后必须保持某些变量(例如,测试设备的某些特定处理条件)。我们称此条件变量选择为嵌入式或深度学习的变量选择方法尚未得到很好的研究。在本文中,我们讨论了一个新颖的条件变量选择框架,该框架可以选择一组预选变量,可以选择最重要的候选变量。

Intelligent test requires efficient and effective analysis of high-dimensional data in a large scale. Traditionally, the analysis is often conducted by human experts, but it is not scalable in the era of big data. To tackle this challenge, variable selection has been recently introduced to intelligent test. However, in practice, we encounter scenarios where certain variables (e.g. some specific processing conditions for a device under test) must be maintained after variable selection. We call this conditional variable selection, which has not been well investigated for embedded or deep-learning-based variable selection methods. In this paper, we discuss a novel conditional variable selection framework that can select the most important candidate variables given a set of preselected variables.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源