论文标题
学习纠正模拟湍流的光谱方法
Learning to correct spectral methods for simulating turbulent flows
论文作者
论文摘要
尽管在整个科学和工程中都无处不在,但只有少数部分微分方程(PDE)具有分析或封闭形式的解决方案。这激发了大量的经典作品,以对PDE的数值模拟进行大量经典工作,最近,对数据驱动技术的研究旋转了机器学习(ML)。最近的一项工作表明,经典数值技术和机器学习的混合体可以对任何一种方法提供重大改进。在这项工作中,我们表明,在纳入基于物理学的先验时,数值方案的选择至关重要。我们基于基于傅立叶的光谱方法,该方法比其他数值方案更有效地使用平滑且周期性的解决方案模拟PDE。具体而言,我们开发了三个常见流体动力学PDE的ML仪求解器。由于神经网络组件的额外运行时成本,我们的模型比标准光谱求解器要比标准光谱求解器更准确(2-4倍),但总体运行时间更长(〜2x)。我们还展示了一些关键设计原理,以结合机器学习和解决PDE的数值方法。
Despite their ubiquity throughout science and engineering, only a handful of partial differential equations (PDEs) have analytical, or closed-form solutions. This motivates a vast amount of classical work on numerical simulation of PDEs and more recently, a whirlwind of research into data-driven techniques leveraging machine learning (ML). A recent line of work indicates that a hybrid of classical numerical techniques and machine learning can offer significant improvements over either approach alone. In this work, we show that the choice of the numerical scheme is crucial when incorporating physics-based priors. We build upon Fourier-based spectral methods, which are known to be more efficient than other numerical schemes for simulating PDEs with smooth and periodic solutions. Specifically, we develop ML-augmented spectral solvers for three common PDEs of fluid dynamics. Our models are more accurate (2-4x) than standard spectral solvers at the same resolution but have longer overall runtimes (~2x), due to the additional runtime cost of the neural network component. We also demonstrate a handful of key design principles for combining machine learning and numerical methods for solving PDEs.