论文标题
Hamiltonian仪表理论与角落:降低和磁通超选择
Hamiltonian gauge theory with corners: constraint reduction and flux superselection
论文作者
论文摘要
我们研究了具有编码的时空歧管的仪表理论 - $ 1 $ submanifold带有边界。每当由局部动量图描述为量规组$ \ MATHCAL {G} $的作用时,我们都会表征该理论的减少相空间,这是通过阶段减少的。动量图分解为一个称为约束图的批量术语,定义了一个坐落式约束集,并称为“通量图”的边界术语。在第一个阶段,减少约束,约束集是正常子组$ \ MATHCAL {G} _ \ CRICC \ subset \ Mathcal {G} $的动量映射的零,称为约束仪。在第二阶段,通量超选择,通量图是通量规组$ \下划线{\ Mathcal {g}} \ doteq \ doteq \ Mathcal {g}/\ Mathcal {g}/\ Mathcal {g} _ \ Circ $的动量图。理论的减少相位空间是平滑的,那么仅是部分泊松歧管$ \下划线{\下划线{\ Mathcal {c}}}} \ simeq \ simeq \ useverline {\ mathcal {c}}}}/\ supperline {\ mathcal {\ mathcal {g}} $。它的齐剪叶被称为\ emph {flux superselection部门},因为它们提供了量子超选择现象的经典类似物和路线图。在拐角处,我们进一步分配了一个托管歧管上的符号谎言代数,$ \ mathsf {a} _ {\ partial} \ \ \ mathcal {p} _ {\ partial} $ $ \ MATHCAL {C} _ {\ PARTIAL} \ subset \ Mathcal {p} _ {\ partial} $也是Poisson。两者$ \ Mathcal {C} _ {\ partial} $和$ \ usewissline {\ usewessline {\ Mathcal {c}}} $纤维纤维在超级选项的共同空间上,标记两种Poisson结构的casimirs。我们通过明确研究Yangs-Mills理论的第一和第二阶段减少来展示形式主义,其中$ \下划线{\下划线{\ Mathcal {c}}}} $被发现是Weinstein空间,并讨论了对拓扑理论的进一步应用。
We study gauge theories on spacetime manifolds with a codimension-$1$ submanifold with boundary. We characterise the reduced phase space of the theory whenever it is described by a local momentum map for the action of the gauge group $\mathcal{G}$, by means of Fréchet reduction by stages. The momentum map decomposes into a bulk term called constraint map, defining a coisotropic constraint set, and a boundary term called flux map. In the first stage, constraint reduction, the constraint set is the zero of a momentum map for a normal subgroup $\mathcal{G}_\circ\subset\mathcal{G}$, called constraint gauge group. In the second stage, flux superselection, the flux map is the momentum map for the residual action of the flux gauge group $\underline{\mathcal{G}}\doteq\mathcal{G}/\mathcal{G}_\circ$, which also controls equivariance. The reduced phase space of the theory, when smooth, is then only a partial Poisson manifold $\underline{\underline{\mathcal{C}}}\simeq \underline{\mathcal{C}}/\underline{\mathcal{G}}$. Its symplectic leaves are called \emph{flux superselection sectors}, for they provide a classical analogue of, and a road map to, the phenomenon of quantum superselection. To corners, we further assign a symplectic Lie algebroid over a Poisson manifold, $\mathsf{A}_{\partial} \to \mathcal{P}_{\partial}$, and show how on-shell configurations $\mathcal{C}_{\partial}\subset\mathcal{P}_{\partial}$ are also Poisson. Both $\mathcal{C}_{\partial}$ and $\underline{\underline{\mathcal{C}}}$ fibrate over a common space of superselections, labeling the Casimirs of both Poisson structures. We showcase the formalism by explicitly working out the first and second stage reductions for a broad class of Yang--Mills theories, where $\underline{\underline{\mathcal{C}}}$ is found to be a Weinstein space, and discuss further applications to topological theories.