论文标题
COVA:利用压缩域分析加速视频分析
CoVA: Exploiting Compressed-Domain Analysis to Accelerate Video Analytics
论文作者
论文摘要
现代回顾性分析系统利用级联体系结构减轻瓶颈来计算深神经网络(DNNS)。但是,现有的级联反应有两个局限性:(1)解码瓶颈要么被忽视或规避,要支付重大的计算和存储成本以进行预处理; (2)系统专门用于时间查询,缺乏空间查询支持。本文介绍了COVA,这是一种新颖的级联体系结构,该结构将压缩域和像素域之间的级联计算分开以解决解码瓶颈,从而支持时间和空间查询。 COVA级联分析分为三个主要阶段,在这些阶段中,前两个阶段是在压缩域中执行的,而在像素域中的最后一个阶段。首先,COVA检测一组压缩帧(称为轨道)上移动对象(称为斑点)的出现。然后,使用轨道结果,Cova谨慎选择一组最小的帧以获取标签信息,并仅解码它们以计算完整的DNN,从而减轻了解码的瓶颈。最后,Cova将跟踪与标签相结合,以产生最终分析结果,用户可以处理时间和空间查询。我们的实验表明,COVA对现代级联系统提供了4.8倍的吞吐量改进,同时施加了适度的精度损失。
Modern retrospective analytics systems leverage cascade architecture to mitigate bottleneck for computing deep neural networks (DNNs). However, the existing cascades suffer two limitations: (1) decoding bottleneck is either neglected or circumvented, paying significant compute and storage cost for pre-processing; and (2) the systems are specialized for temporal queries and lack spatial query support. This paper presents CoVA, a novel cascade architecture that splits the cascade computation between compressed domain and pixel domain to address the decoding bottleneck, supporting both temporal and spatial queries. CoVA cascades analysis into three major stages where the first two stages are performed in compressed domain while the last one in pixel domain. First, CoVA detects occurrences of moving objects (called blobs) over a set of compressed frames (called tracks). Then, using the track results, CoVA prudently selects a minimal set of frames to obtain the label information and only decode them to compute the full DNNs, alleviating the decoding bottleneck. Lastly, CoVA associates tracks with labels to produce the final analysis results on which users can process both temporal and spatial queries. Our experiments demonstrate that CoVA offers 4.8x throughput improvement over modern cascade systems, while imposing modest accuracy loss.