论文标题
在具有物理受限的高斯过程的等离子体方程模型中的约束模型不确定性
Constraining Model Uncertainty in Plasma Equation-of-State Models with a Physics-Constrained Gaussian Process
论文作者
论文摘要
状态方程(EOS)模型是在高能量密度物理学,惯性限制融合,实验室天体物理学和其他地方研究核心的数值模拟的基础。在这些应用中,需要EOS模型,以使热力学变量的范围远远超过可用数据的范围,这使得EOS模型的不确定性定量(UQ)成为一个重大问题。模型不确定性是由EOS选择的功能形式选择引起的,这是对EOS的UQ研究的主要挑战,通常被忽略了,而不是易于捕获的参数和数据不确定性,而无需违反对EOSS的物理约束而更容易捕获。在这项工作中,我们介绍了一种新的统计EOS结构,该结构自然捕获模型的不确定性,同时自动遵守热力学一致性约束。我们将模型应用于$ b_4c $ \的现有数据,以将上限放在EOS和Hugoniot的不确定性上,并表明热力学约束的忽视高估了当可用数据时的几个因素,而在挤压到没有的区域时,几个数据的不确定性都无法确定。我们讨论了这种方法的扩展,以及基于GP的模型在加速模拟和实验研究中的作用,定义了便携式不确定性感知到的EOS表,并使不确定性感知到下游任务。
Equation-of-state (EOS) models underpin numerical simulations at the core of research in high energy density physics, inertial confinement fusion, laboratory astrophysics, and elsewhere. In these applications EOS models are needed that span ranges of thermodynamic variables that far exceed the ranges where data are available, making uncertainty quantification (UQ) of EOS models a significant concern. Model uncertainty, arising from the choice of functional form assumed for the EOS, is a major challenge to UQ studies for EOS that is usually neglected in favor of parameteric and data uncertainties which are easier to capture without violating the physical constraints on EOSs. In this work we introduce a new statistical EOS construction that naturally captures model uncertainty while automatically obeying the thermodynamic consistency constraint. We apply the model to existing data for $B_4C$\ to place an upper bound on the uncertainty in the EOS and Hugoniot, and show that the neglect of thermodynamic constraints overestimates the uncertainty by factors of several when data are available and underestimates when extrapolating to regions where they are not. We discuss extensions to this approach, and the role of GP-based models in accelerating simulation and experimental studies, defining portable uncertainty-aware EOS tables, and enabling uncertainty-aware downstream tasks.