论文标题

GOF-TTE:用于旅行时间估计的生成在线联合学习框架

GOF-TTE: Generative Online Federated Learning Framework for Travel Time Estimation

论文作者

Zhang, Zhiwen, Wang, Hongjun, Chen, Jiyuan, Fan, Zipei, Song, Xuan, Shibasaki, Ryosuke

论文摘要

估计路径的旅行时间是智能运输系统的重要主题。它是实际应用程序的基础,例如交通监控,路线计划和出租车派遣。但是,为这样的数据驱动任务构建模型需要大量用户的旅行信息,这与其隐私直接相关,因此不太可能共享。数据所有者之间的非独立且相同分布的(非IID)轨迹数据也使一个预测模型极具挑战性,如果我们直接应用联邦学习。最后,以前关于旅行时间估算的工作并未考虑道路的实时交通状态,我们认为这可能会极大地影响预测。为了应对上述挑战,我们为移动用户组介绍了GOF-TTE,生成在线联合学习框架以进行旅行时间估计,这i)i)采用联合学习方法,允许在培训时将私有数据保存在客户端设备上,并将全球模型设计为所有客户共享的在线生成模型,以推断实时的道路交通状态。 ii)除了在服务器上共享基本模型外,还为每个客户调整了一个微调的个性化模型,以研究其个人驾驶习惯,从而弥补了局部全球模型预测的残留错误。 %iii)将全球模型设计为所有客户共享的在线生成模型,以推断实时的道路交通状态。我们还对我们的框架采用了简单的隐私攻击,并实施了差异隐私机制,以进一步保证隐私安全。最后,我们对Didi Chengdu和Xi'an的两个现实世界公共出租车数据集进行了实验。实验结果证明了我们提出的框架的有效性。

Estimating the travel time of a path is an essential topic for intelligent transportation systems. It serves as the foundation for real-world applications, such as traffic monitoring, route planning, and taxi dispatching. However, building a model for such a data-driven task requires a large amount of users' travel information, which directly relates to their privacy and thus is less likely to be shared. The non-Independent and Identically Distributed (non-IID) trajectory data across data owners also make a predictive model extremely challenging to be personalized if we directly apply federated learning. Finally, previous work on travel time estimation does not consider the real-time traffic state of roads, which we argue can significantly influence the prediction. To address the above challenges, we introduce GOF-TTE for the mobile user group, Generative Online Federated Learning Framework for Travel Time Estimation, which I) utilizes the federated learning approach, allowing private data to be kept on client devices while training, and designs the global model as an online generative model shared by all clients to infer the real-time road traffic state. II) apart from sharing a base model at the server, adapts a fine-tuned personalized model for every client to study their personal driving habits, making up for the residual error made by localized global model prediction. % III) designs the global model as an online generative model shared by all clients to infer the real-time road traffic state. We also employ a simple privacy attack to our framework and implement the differential privacy mechanism to further guarantee privacy safety. Finally, we conduct experiments on two real-world public taxi datasets of DiDi Chengdu and Xi'an. The experimental results demonstrate the effectiveness of our proposed framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源