论文标题
通过句子间注意机制改善基于变压器的对话ASR
Improving Transformer-based Conversational ASR by Inter-Sentential Attention Mechanism
论文作者
论文摘要
基于变压器的模型已经证明了它们在自动语音识别(ASR)任务中的有效性,甚至在传统混合框架上表现出了出色的性能。变形金刚的主要思想是通过自我发挥层来捕捉话语中的远程全球背景。但是,对于诸如对话演讲之类的场景,这种话语级建模将忽略跨越话语的上下文依赖性。在本文中,我们建议在基于变压器的端到端体系结构中明确建模以进行对话性语音识别。具体而言,对于编码网络,我们捕获了先前语音的上下文,并将此类历史信息纳入了上下文感知的残余注意机制中的当前输入。对于解码器而言,当前话语的预测还可以通过有条件的解码器框架在历史性的语言信息上进行调节。我们展示了我们提出的方法在几个开源对话中心的有效性,而拟议的方法始终提高了基于话语级变压器的ASR模型的性能。
Transformer-based models have demonstrated their effectiveness in automatic speech recognition (ASR) tasks and even shown superior performance over the conventional hybrid framework. The main idea of Transformers is to capture the long-range global context within an utterance by self-attention layers. However, for scenarios like conversational speech, such utterance-level modeling will neglect contextual dependencies that span across utterances. In this paper, we propose to explicitly model the inter-sentential information in a Transformer based end-to-end architecture for conversational speech recognition. Specifically, for the encoder network, we capture the contexts of previous speech and incorporate such historic information into current input by a context-aware residual attention mechanism. For the decoder, the prediction of current utterance is also conditioned on the historic linguistic information through a conditional decoder framework. We show the effectiveness of our proposed method on several open-source dialogue corpora and the proposed method consistently improved the performance from the utterance-level Transformer-based ASR models.