论文标题

通过机器学习算法进行勒索软件分类和检测

Ransomware Classification and Detection With Machine Learning Algorithms

论文作者

Masum, Mohammad, Faruk, Md Jobair Hossain, Shahriar, Hossain, Qian, Kai, Lo, Dan, Adnan, Muhaiminul Islam

论文摘要

恶意攻击,恶意软件和勒索软件家族对网络安全提出了关键的安全问题,这可能会对各个行业和企业的计算机系统,数据中心,Web和移动应用程序造成灾难性损害。传统的反验证软件系统努力与新创造的复杂攻击作斗争。因此,在创新勒索软件解决方案的开发中,可以极大地利用传统和基于神经网络的架构等最新技术。在本文中,我们提出了一个基于功能选择的框架,该框架采用了不同的机器学习算法,包括基于神经网络的体系结构,以对勒索软件检测和预防的安全级别进行分类。我们应用了多个机器学习算法:决策树(DT),随机森林(RF),幼稚贝叶斯(NB),逻辑回归(LR)以及基于神经网络(NN)的分类器,这些分类器用于勒索软件分类的选定特征。我们在一个勒索软件数据集上执行了所有实验,以评估我们提出的框架。实验结果表明,在准确性,F-beta和精度得分方面,RF分类器的表现优于其他方法。

Malicious attacks, malware, and ransomware families pose critical security issues to cybersecurity, and it may cause catastrophic damages to computer systems, data centers, web, and mobile applications across various industries and businesses. Traditional anti-ransomware systems struggle to fight against newly created sophisticated attacks. Therefore, state-of-the-art techniques like traditional and neural network-based architectures can be immensely utilized in the development of innovative ransomware solutions. In this paper, we present a feature selection-based framework with adopting different machine learning algorithms including neural network-based architectures to classify the security level for ransomware detection and prevention. We applied multiple machine learning algorithms: Decision Tree (DT), Random Forest (RF), Naive Bayes (NB), Logistic Regression (LR) as well as Neural Network (NN)-based classifiers on a selected number of features for ransomware classification. We performed all the experiments on one ransomware dataset to evaluate our proposed framework. The experimental results demonstrate that RF classifiers outperform other methods in terms of accuracy, F-beta, and precision scores.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源