论文标题

定期驱动的极化系统的量子热力学

Quantum thermodynamics of periodically driven polaritonic systems

论文作者

Ochoa, Maicol A.

论文摘要

我们研究室温下固定状态下的极化系统中的能量分布和量子热力学。具体而言,我们将激烈的激子强烈耦合到谐波振荡器,并量化这两个系统之间的能量重组及其相互作用,这是耦合强度,驱动力和失调的函数。在具有弱环境相互作用的polariton密度矩阵的量子主方程后,我们获得了耗散时间传播器和平衡初始状态的长时间演变。这种方法可直接访问固定状态,并克服了在共振附近弱阻尼的量子系统的数值演变中发现的困难,这也可以在Polariton线形上提供地图。然后,我们计算谐波调制过程中的热力学性能,并证明在共振下最大效率。我们还为不可逆的热率提供了一种表达,并在数值上证明这与热力学定律一致。

We investigate the energy distribution and quantum thermodynamics in periodically driven polaritonic systems in the stationary state at room temperature. Specifically, we consider an exciton strongly coupled to a harmonic oscillator and quantify the energy reorganization between these two systems and their interaction as a function of coupling strength, driving force, and detuning. After deriving the quantum master equation for the polariton density matrix with weak environment interactions, we obtain the dissipative time propagator and the long-time evolution of an equilibrium initial state. This approach provides direct access to the stationary state and overcomes the difficulties found in the numerical evolution of weakly damped quantum systems near resonance, also providing maps on the polariton lineshape. Then, we compute the thermodynamic performance during harmonic modulation and demonstrate that maximum efficiency occurs at resonance. We also provide an expression for the irreversible heat rate and numerically demonstrate that this agrees with the thermodynamic laws.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源