论文标题

通过深度学习模型了解Tieq越野

Understanding Tieq Viet with Deep Learning Models

论文作者

Thanh, Nguyen Ha

论文摘要

深度学习是恢复丢失的信息以及更难的逆功能计算问题的强大方法。当在自然语言处理中应用时,这种方法实质上是利用上下文来通过最大化来恢复信息的手段。不久前,一项名为TIEQ越野的语言研究在研究人员和社会中都是有争议的。我们发现这是一个很好的例子,可以证明深度学习模型恢复丢失的信息的能力。在TIEQ越野的提议中,标准越南人中的一些辅音被取代。本提案中写的句子可以解释为标准版本中的多个句子,其含义不同。我们要测试的假设是,如果我们将文本从越南语翻译成Tieq越南,深度学习模型是否可以恢复丢失的信息。

Deep learning is a powerful approach in recovering lost information as well as harder inverse function computation problems. When applied in natural language processing, this approach is essentially making use of context as a mean to recover information through likelihood maximization. Not long ago, a linguistic study called Tieq Viet was controversial among both researchers and society. We find this a great example to demonstrate the ability of deep learning models to recover lost information. In the proposal of Tieq Viet, some consonants in the standard Vietnamese are replaced. A sentence written in this proposal can be interpreted into multiple sentences in the standard version, with different meanings. The hypothesis that we want to test is whether a deep learning model can recover the lost information if we translate the text from Vietnamese to Tieq Viet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源