论文标题
重新审视了组合重新配置的算法元理论
Algorithmic Meta-Theorems for Combinatorial Reconfiguration Revisited
论文作者
论文摘要
给定图形和两个顶点设置满足一定的可行性条件,重新配置问题询问我们是否可以通过在维持可行性的同时重复规定的修改步骤来从另一个顶点设置一个顶点。在这种情况下,Mouawad等。 [IPEC 2014]提出了一种用于重新配置问题的算法元理论,该算法说,如果可行性可以用单层次的二阶逻辑(MSO)表示,那么该问题是固定参数可通过$ \ \ \ textrm {treewidth} + \ ell $ \ ell $ \ ell $允许的允许的允许的允许的允许的允许的固定参数可用于参数。另一方面,它由Wrochna [J.所示。计算。系统。科学。 [2018]如果$ \ ell $不是参数的一部分,那么即使在有限的带宽图上,问题也是pspace complete。 在本文中,我们使用某些与带宽无与伦比的结构图参数,介绍了$ \ ell $不是参数的第一算法元理论。我们表明,如果在MSO中定义了可行性,那么所谓的代币跳跃规则下的重新配置问题是固定参数可通过邻里多样性进行参数。我们还表明,该问题是固定参数可通过$ \ textrm {treedeptth} + k $进行参数化的固定参数,其中$ k $是要转换的集合的大小。我们终于通过表明该问题在深度$ 3 $的森林中列入了TreeDepth的积极结果。
Given a graph and two vertex sets satisfying a certain feasibility condition, a reconfiguration problem asks whether we can reach one vertex set from the other by repeating prescribed modification steps while maintaining feasibility. In this setting, Mouawad et al. [IPEC 2014] presented an algorithmic meta-theorem for reconfiguration problems that says if the feasibility can be expressed in monadic second-order logic (MSO), then the problem is fixed-parameter tractable parameterized by $\textrm{treewidth} + \ell$, where $\ell$ is the number of steps allowed to reach the target set. On the other hand, it is shown by Wrochna [J. Comput. Syst. Sci. 2018] that if $\ell$ is not part of the parameter, then the problem is PSPACE-complete even on graphs of bounded bandwidth. In this paper, we present the first algorithmic meta-theorems for the case where $\ell$ is not part of the parameter, using some structural graph parameters incomparable with bandwidth. We show that if the feasibility is defined in MSO, then the reconfiguration problem under the so-called token jumping rule is fixed-parameter tractable parameterized by neighborhood diversity. We also show that the problem is fixed-parameter tractable parameterized by $\textrm{treedepth} + k$, where $k$ is the size of sets being transformed. We finally complement the positive result for treedepth by showing that the problem is PSPACE-complete on forests of depth $3$.