论文标题
特殊伽马值和乔拉 - 塞尔伯格现象之间的代数关系
Algebraic Relations among Special Gamma Values and the Chowla-Selberg Phenomenon over Function Fields
论文作者
论文摘要
本文的目的是确定各种特殊伽马值对功能字段的所有代数关系,并证明了CM Abelian $ t $ modules的准周期的Chowla-Selberg-type公式。我们的结果是基于有关伽马值与CM双$ t $ - 动物的期限之间的内在关系,这些关系是根据其“分布”来解释的。这也使我们能够得出CM Hodge-Pink结构的Deligne-Gross时期猜想的类似物。
The aim of this paper is to determine all algebraic relations among various special gamma values over function fields, and prove a Chowla-Selberg-type formula for quasi-periods of CM abelian $t$-modules. Our results are based on the intrinsic relations between gamma values in question and periods of CM dual $t$-motives, which are interpreted in terms of their "distributions". This also enables us to derive an analogue of the Deligne-Gross period conjecture for CM Hodge-Pink structures.