论文标题
使用扩散来增强本地功能学习,以了解3D点云理解
Enhancing Local Feature Learning Using Diffusion for 3D Point Cloud Understanding
论文作者
论文摘要
由于缺乏连接性信息,即边缘,学习点云是具有挑战性的。尽管现有的边缘感知方法可以通过建模边缘来改善性能,但边缘如何促进改进尚不清楚。在这项研究中,我们提出了一种自动学习以增强/抑制边缘的方法,同时保持其工作机制清晰。首先,我们从理论上弄清楚边缘增强/抑制作用是如何工作的。其次,我们通过实验验证边缘增强/抑制行为。第三,我们从经验上表明,这种行为可以提高绩效。通常,我们观察到所提出的方法在点云分类和分割任务中实现了竞争性能。
Learning point clouds is challenging due to the lack of connectivity information, i.e., edges. Although existing edge-aware methods can improve the performance by modeling edges, how edges contribute to the improvement is unclear. In this study, we propose a method that automatically learns to enhance/suppress edges while keeping the its working mechanism clear. First, we theoretically figure out how edge enhancement/suppression works. Second, we experimentally verify the edge enhancement/suppression behavior. Third, we empirically show that this behavior improves performance. In general, we observe that the proposed method achieves competitive performance in point cloud classification and segmentation tasks.