论文标题

使用扩散来增强本地功能学习,以了解3D点云理解

Enhancing Local Feature Learning Using Diffusion for 3D Point Cloud Understanding

论文作者

Xiu, Haoyi, Liu, Xin, Wang, Weimin, Kim, Kyoung-Sook, Shinohara, Takayuki, Chang, Qiong, Matsuoka, Masashi

论文摘要

由于缺乏连接性信息,即边缘,学习点云是具有挑战性的。尽管现有的边缘感知方法可以通过建模边缘来改善性能,但边缘如何促进改进尚不清楚。在这项研究中,我们提出了一种自动学习以增强/抑制边缘的方法,同时保持其工作机制清晰。首先,我们从理论上弄清楚边缘增强/抑制作用是如何工作的。其次,我们通过实验验证边缘增强/抑制行为。第三,我们从经验上表明,这种行为可以提高绩效。通常,我们观察到所提出的方法在点云分类和分割任务中实现了竞争性能。

Learning point clouds is challenging due to the lack of connectivity information, i.e., edges. Although existing edge-aware methods can improve the performance by modeling edges, how edges contribute to the improvement is unclear. In this study, we propose a method that automatically learns to enhance/suppress edges while keeping the its working mechanism clear. First, we theoretically figure out how edge enhancement/suppression works. Second, we experimentally verify the edge enhancement/suppression behavior. Third, we empirically show that this behavior improves performance. In general, we observe that the proposed method achieves competitive performance in point cloud classification and segmentation tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源