论文标题
嘈杂速度图像的联合重建和分割,作为逆向纳维尔 - 斯托克斯问题
Joint reconstruction and segmentation of noisy velocity images as an inverse Navier-Stokes problem
论文作者
论文摘要
我们为关节速度场的重建和噪声流速度图像的接头速度场重建和边界分割制定并解决了广义的逆向纳维尔 - 斯托克斯问题。为了使问题正常,我们使用带有高斯随机字段的贝叶斯框架。这使我们能够通过使用准Newton方法近似其后协方差来估计未知数的不确定性。我们首先测试了2D流的合成噪声图像的方法,并观察到该方法成功地重建和段的噪声合成图像,具有信噪比(SNR)为3。然后,我们进行了磁共振速率(MRV)实验,以获取低($ \ simeq $ \ simeq)($ \ simeq)($ \ simeq)($ \ simeq)($ \ simeqime qieme quime)的图像($ \ simeq)($ \ simeq)($ \ simeq)。我们表明该方法能够重建和分割低SNR图像,产生无噪声的速度字段和平滑的分割,与高SNR图像相比,错误的错误可忽略不计。这相当于将总扫描时间减少27倍。与此同时,该方法提供了有关流动物理学(例如压力)的额外知识,并解决了MRV(低空间分辨率和部分量效应)的缺点,否则否则会阻碍壁剪应力的准确估计。尽管该方法的实现仅限于2D稳定的平面和轴对称流,但该配方立即适用于3D稳定的流动,并且自然延伸至3D周期性和不稳定的流动。
We formulate and solve a generalized inverse Navier-Stokes problem for the joint velocity field reconstruction and boundary segmentation of noisy flow velocity images. To regularize the problem we use a Bayesian framework with Gaussian random fields. This allows us to estimate the uncertainties of the unknowns by approximating their posterior covariance with a quasi-Newton method. We first test the method for synthetic noisy images of 2D flows and observe that the method successfully reconstructs and segments the noisy synthetic images with a signal-to-noise ratio (SNR) of 3. Then we conduct a magnetic resonance velocimetry (MRV) experiment to acquire images of an axisymmetric flow for low ($\simeq 6$) and high ($>30$) SNRs. We show that the method is capable of reconstructing and segmenting the low SNR images, producing noiseless velocity fields and a smooth segmentation, with negligible errors compared with the high SNR images. This amounts to a reduction of the total scanning time by a factor of 27. At the same time, the method provides additional knowledge about the physics of the flow (e.g. pressure), and addresses the shortcomings of MRV (low spatial resolution and partial volume effects) that otherwise hinder the accurate estimation of wall shear stresses. Although the implementation of the method is restricted to 2D steady planar and axisymmetric flows, the formulation applies immediately to 3D steady flows and naturally extends to 3D periodic and unsteady flows.