论文标题

从射线追踪到连续介质的拓扑起源波

From ray tracing to waves of topological origin in continuous media

论文作者

Venaille, Antoine, Onuki, Yohei, Perez, Nicolas, Leclerc, Armand

论文摘要

不均匀的介质通常支持一个离散数量的波模式,这些波模式沿着由空间变化的参数定义的接口捕获。当它们对参数的连续变形具有稳健性时,这种波被称为拓扑起源。在过去的几十年中,已经意识到,可以通过计算单个拓扑来源的波浪来预测,在双散装波问题中,计算单个拓扑不变的第一个Chern号,它比涉及空间变化系数的原始波动方程要简单得多。简单的批量问题与更复杂的界面问题之间的对应关系通常是通过调用抽象索引定理来证明的。在这里,通过将射线追踪机械应用于赤道浅水波的范式示例,我们提出了对该对应关系的物理解释。我们首先使用wigner-weyl变换来计算由位置和波形盒的波数给出的相空间中的射线轨迹。然后,我们应用量化条件来描述原始波动算子的光谱特性。我们表明,Chern号码自然而然地来自此量化关系。

Inhomogeneous media commonly support a discrete number of wave modes that are trapped along interfaces defined by spatially varying parameters. When they are robust against continuous deformations of parameters, such waves are said to be of topological origin. It has been realized over the last decades that such waves of topological origin can be predicted by computing a single topological invariant, the first Chern number, in a dual bulk wave problem that is much simpler to solve than the original wave equation involving spatially varying coefficients. The correspondence between the simple bulk problem and the more complicated interface problem is usually justified by invoking an abstract index theorem. Here, by applying ray tracing machinery to the paradigmatic example of equatorial shallow water waves, we propose a physical interpretation of this correspondence. We first compute ray trajectories in a phase space given by position and wavenumber of the wave packet, using Wigner-Weyl transforms. We then apply a quantization condition to describe the spectral properties of the original wave operator. We show that the Chern number emerges naturally from this quantization relation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源