论文标题

COVAXNET:COVID-19疫苗犹豫研究的在线下线数据存储库

CoVaxNet: An Online-Offline Data Repository for COVID-19 Vaccine Hesitancy Research

论文作者

Jiang, Bohan, Sheth, Paras, Li, Baoxin, Liu, Huan

论文摘要

尽管Covid-19疫苗对病毒取得了惊人的成功,但很大一部分人口仍然不愿接受疫苗接种,这破坏了政府控制该病毒的努力。为了解决这个问题,我们需要了解导致这种行为的不同因素,包括社交媒体话语,新闻媒体宣传,政府的回应,人口统计学和社会经济状况以及COVID-19统计数据等。但是,现有数据集未能涵盖所有这些方面,使得在推断疫苗问题中很难构成完整的疫苗问题。在本文中,我们构建了一个多源,多模式和多功能在线数据存储库Covaxnet。我们提供描述性分析和见解,以说明Covaxnet中的关键模式。此外,我们提出了一种连接在线和离线数据的新方法,以促进利用互补信息源的推理任务。

Despite the astonishing success of COVID-19 vaccines against the virus, a substantial proportion of the population is still hesitant to be vaccinated, undermining governmental efforts to control the virus. To address this problem, we need to understand the different factors giving rise to such a behavior, including social media discourses, news media propaganda, government responses, demographic and socioeconomic statuses, and COVID-19 statistics, etc. However, existing datasets fail to cover all these aspects, making it difficult to form a complete picture in inferencing about the problem of vaccine hesitancy. In this paper, we construct a multi-source, multi-modal, and multi-feature online-offline data repository CoVaxNet. We provide descriptive analyses and insights to illustrate critical patterns in CoVaxNet. Moreover, we propose a novel approach for connecting online and offline data so as to facilitate the inference tasks that exploit complementary information sources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源