论文标题

野生网络:5G网络基础架构暴露于对抗示例中

Wild Networks: Exposure of 5G Network Infrastructures to Adversarial Examples

论文作者

Apruzzese, Giovanni, Vladimirov, Rodion, Tastemirova, Aliya, Laskov, Pavel

论文摘要

第五代(5G)网络必须支持数十亿个异质设备,同时保证最佳服务质量(QoS)。这样的要求是不可能单独满足人类努力的,而机器学习(ML)代表了5G中的核心资产。然而,已知ML容易受到对抗性例子的影响。此外,正如我们的论文所表明的那样,5G上下文暴露于另一种类型的对抗ML攻击,而现有威胁模型无法正式化。由于缺乏可用于对抗性ML研究的ML供电的5G设备,因此对此类风险的积极评估也有挑战性。 为了解决这些问题,我们提出了一种新型的对抗ML威胁模型,该模型特别适合5G场景,不可知ML所解决的精确函数。与现有的ML威胁模型相反,由于QoS保证和5G网络的开放性质,我们的攻击不需要对目标5G系统的任何妥协。此外,我们根据公共数据提出了一个针对现实的ML安全评估的原始框架。我们主动评估我们的威胁模型对5G中设想的ML的6个应用。我们的攻击会影响训练和推理阶段,可能会降低最先进的ML系统的性能,并且与以前的攻击相比,进入障碍较低。

Fifth Generation (5G) networks must support billions of heterogeneous devices while guaranteeing optimal Quality of Service (QoS). Such requirements are impossible to meet with human effort alone, and Machine Learning (ML) represents a core asset in 5G. ML, however, is known to be vulnerable to adversarial examples; moreover, as our paper will show, the 5G context is exposed to a yet another type of adversarial ML attacks that cannot be formalized with existing threat models. Proactive assessment of such risks is also challenging due to the lack of ML-powered 5G equipment available for adversarial ML research. To tackle these problems, we propose a novel adversarial ML threat model that is particularly suited to 5G scenarios, and is agnostic to the precise function solved by ML. In contrast to existing ML threat models, our attacks do not require any compromise of the target 5G system while still being viable due to the QoS guarantees and the open nature of 5G networks. Furthermore, we propose an original framework for realistic ML security assessments based on public data. We proactively evaluate our threat model on 6 applications of ML envisioned in 5G. Our attacks affect both the training and the inference stages, can degrade the performance of state-of-the-art ML systems, and have a lower entry barrier than previous attacks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源