论文标题
Grover在图表上的量子步行的定量方法
Quantitative approach to Grover's quantum walk on graphs
论文作者
论文摘要
在本文中,我们研究了Grover的搜索算法,重点是在图形上连续时量子步行。我们为Grover的算法提出了一种替代优化方法,可以总结如下:我们修复了图形拓扑并改变基础图Laplacians,而不是找到方便的相关量子步行的特定图形拓扑。结果,我们在具有固定拓扑结构的图表上搜索最适当的分析结构,从而产生更好的搜索结果。我们讨论了调查格罗弗算法最佳性的策略,并提供了一个简单的可调图laplacian来调查我们的想法的示例。
In this paper, we study Grover's search algorithm focusing on continuous-time quantum walk on graphs. We propose an alternative optimization approach to Grover's algorithm on graphs that can be summarized as follows: instead of finding specific graph topologies convenient for the related quantum walk, we fix the graph topology and vary the underlying graph Laplacians. As a result, we search for the most appropriate analytical structure on graphs endowed with fixed topologies yielding better search outcomes. We discuss strategies to investigate the optimality of Grover's algorithm and provide an example with an easy tunable graph Laplacian to investigate our ideas.