论文标题

BYHE:一个简单的框架,用于促进端到端基于视频的心率测量网络

BYHE: A Simple Framework for Boosting End-to-end Video-based Heart Rate Measurement Network

论文作者

Sun, Weiyu, Zhang, Xinyu, Chen, Ying, Ge, Yun, Ji, Chunyu, Huang, Xiaolin

论文摘要

基于远程照相学(RPPG)的心率测量在健康护理中起着重要作用,该角色以非接触式,不受约束的方式估计面部视频的心率。端到端的神经网络是基于RPPG的心率估计方法的主要分支,其性状正在恢复RPPG信号,该信号直接从原始面部视频中恢复了足够的心率消息。但是,在相关数据集上存在一些容易被忽视的问题,这些问题挫败了对端到端方法的有效训练,例如不确定的时间延迟和标签波的不确定信封形状。尽管提出了许多新颖和强大的网络,但迄今为止,尚无系统的研究涉足这些问题。在本文中,从常见的内在节奏周期性相似性的角度来看,我们提出了一种全面的方法论,可以提高您的心跳估计(BYHE),包括新的标签表示,相应的网络调整和损失功能。 BYHE可以很容易地在当前端到端网络上移植并提高其训练效率。通过应用我们的方法论,我们可以在不进行费力的手工作品的情况下节省巨大的时间,例如以前的端到端方法所必需的标签波对准,同时可以增强数据集上的利用率。根据我们的实验,Byhe可以利用经典的端到端网络来与大多数使用的数据集中的最新方法相对于竞争性能。这种改进表明选择有明显和有效的标签表示也是朝着更好的远程生理信号测量的有希望的方向。

Heart rate measuring based on remote photoplethysmography (rPPG) plays an important role in health caring, which estimates heart rate from facial video in a non-contact, less-constrained way. End-to-end neural network is a main branch of rPPG-based heart rate estimation methods, whose trait is recovering rPPG signal containing sufficient heart rate message from original facial video directly. However, there exists some easily neglected problems on relevant datasets which thwarting the efficient training of end-to-end methods, such as uncertain temporal delay and indefinite envelope shape of label waves. Although many novel and powerful networks are proposed, hitherto there are no systematic research digging into these problems. In this paper, from perspective of common intrinsic rhythm periodical self-similarity results from cardiac activities, we propose a comprehensive methodology, Boost Your Heartbeat Estimation (BYHE), including new label representations, corresponding network adjustments and loss functions. BYHE can be easily grafted on current end-to-end network and boost its training efficiency. By applying our methodology, we can save tremendous time without conducting laborious handworks, such as label wave alignment which is necessary for previous end-to-end methods, and meanwhile enhance the utilization on datasets. According to our experiments, BYHE can leverage classical end-to-end network to reach competitive performance against those state-of-the-art methods on mostly used datasets. Such improvement indicates selecting perspicuous and efficient label representation is also a promising direction towards better remote physiological signal measurement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源